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Characteristic equations of the pn junction 

§ Definition: the pn junction is a semiconductor region where a p-type and 
an n-type doped materials are placed side by side.

§ Example: the abrupt junction of two uniformly doped semiconductors.

M. Mandurrino (INFN-To) “From the pn junction to the UFSD design”, Torino – 9.05.19 4

qχ is the electronic affinity (~4.05 eV in Si)
qΦ is the semiconductor work function

x



Characteristic equations of the pn junction 

§ Golden-rules to compute the final band-diagram:
1. Eg and qχ are conserved by definition;
2. EF must be constant across the junction;

3. E0 and bands must be continuous functions (in space x).
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Characteristic equations of the pn junction 

§ The gradient of carriers concentration produces a transient, in which electrons 
travel from the n-side to the p-side (the vice-versa holds for holes). This 
mechanism behaves as a diffusion-like dynamics

§ The diffusion of free charges depletes a zone across the junction, called space-
charge region (SCR), where fixed charges (ionized atoms) are no more 
compensated by free charges (!≠0). Far from the junction, we still have 
compensation (neutral regions, !=0)
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Characteristic equations of the pn junction 
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§ Within the space-charge region (ρ≠0) the field is not a constant and 
bands are no more straight lines. In particular, due to the Poisson 
equation of semiconductors

where                 is the potential energy felt by free charges, we have
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by 1st x-integration of the Poisson eq.:

directly from the Poisson eq.

by definition of space-charge region

U

ρ



Characteristic equations of the pn junction 

§ So, finally we have:
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Characteristic equations of the pn junction 

What we concluded has several important physical implications:
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1. implies the onset of a drift current
of carriers tending to compensate the 
diffusion of free charges such that           ;

2. A built-in potential , created across 
the junction, represents an additional 
barrier for the diffusion of electrons 
towards the p-side (and holes in the n-side)



Characteristic equations of the pn junction 

What we concluded has several important physical implications:
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3. By integrating the Poisson equation, and 
thanks to the neutrality law                        , 
one has

and

4. In the same way:



Characteristic equations of the pn junction 

➤ What happens if the junction is no more at equilibrium?
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Direct polarization

§ V > 0, I > 0
§ Jdiff dominates
§ electrons from n- to p-side
§ holes from p- to n-side
§ qV < qVbi

Reverse polarization

§ V < 0, I < 0
§ Jdrift dominates
§ electrons from p- to n-side
§ holes from n- to p-side
§ qV > qVbi



Characteristic equations of the pn junction 

➤ What happens if the junction is no more at equilibrium?
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Reverse polarizationDirect polarization



Characteristic equations of the pn junction 
§ pn junction at equilibrium:
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SCR

qNRqNR

p n



Characteristic equations of the pn junction 
§ pn junction in reverse polarization:
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SCR

qNRqNR

§ Vbias < 0, I < 0
§ Jdrift dominates
§ electrons from p- to n-side
§ holes from n- to p-side
§ qVbias > qVbi

< 0

p n



Characteristic equations of the pn junction 
§ pn junction in forward polarization:
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> 0

SCR

qNRqNR

§ Vbias > 0, I > 0
§ Jdiff dominates
§ electrons from n- to p-side
§ holes from p- to n-side
§ qVbias < qVbi

p n
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Towards a technological step…
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J. Bardeen, W. Brattain, W. Shockley
Bell Labs. - NJ

(1948)

first n-p-n “tip”-transistor

UFSD Group
INFN Torino and FBK Trento

(2018)

Ultra Fast Silicon Detector



Extending our application domain to other systems
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§ How large the external biasing voltage has to be?

V0

C

full depletion
(~ V)

← reverse bias

ℇ

v

vsat

0← increasing field

velocity
saturation

(~102 kV/cm)

Vdep

Working principles of an LGAD



Working principles of an LGAD

➤ What is charge multiplication in LGAD?

§ Primary charges (electron/hole pairs) are produced by ionization, while the 
particle is crossing the sensor;

§ Due to the reverse field, electrons drift towards the n-side and holes 
towards the p-side;

§ When electrons travel along the p+ region (the gain- or multiplication-layer) 
they experience an high field;

§ This field is responsible for the impact ionization, which produces an 
avalanche multiplication of secondary charges;

§ Now the total current is due to the additional avalanche contribution.
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p ni(π) p+

V0V –



➤ Why using LGAD to detect particles at CERN?

I. We need charge multiplication:
1. LGAD exploit the so-called avalanche multiplication, a process

which belongs to the class of generation/recombination (GR)
mechanisms;

2. Charge multiplication allows to obtain large and fast signals:
• the thinner the sensor, the faster the signal;
• the higher the gain, the larger the signal.

II. We need a good S/N:
1. Also the noise related to the current signal is proportional to the gain

2. The gain G has to be kept as low as required by electronics (G ~ 10-20)
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➤ Why using LGAD to detect particles at CERN?

Examples of 50 µm LGAD performance:
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reverse current & gain versus bias V

10%

90%

τ ≃ 500 ps

current signal (test beam @ CERN-H8)

V ≃ 200 V
G ≃ 20
σt ≃ 30 ps

Working principles of an LGAD



➤ Can we predict the avalanche contribution to the total current?

Let’s introduce a bit of physical-mathematics…

1. The avalanche process is modeled via its ionization coefficient α, i.e. 
the inverse of the electron/hole mean free path (cm–1);

2. In the literature, several expressions of α are available. In general, all of 
them are based on the Chynoweth’s theory (1958), according to which:

3. Once the coefficient has been obtained, one has to evaluate the net 
avalanche generation rate Uaval, i.e. the number of multiplied e–/h+

pairs per volume (cm–3) per unit time (s–1), as:

… Now we need a complete description of the system!
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Working principles of an LGAD
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§ We recall the twofold nature of the current in a semiconductor device:
a. Drift current, driven by the electric field;
b. Diffusion current, due to the density gradient of free charges.

§ Then we introduce (all) the GR mechanisms through their net rates U:
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§ To derive the global current density (field + charge + GR):
1. in a volume dV = Adx the time variation of the electron density (similarly for holes) 

is

2. by using the 1st-order Taylor series expansion

and assuming dx ⟶ 0, we obtain the continuity equations:
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Electronic device modeling - I

field + charge GR



§ Since the drift component depends on the electric field, we need a third 
equation to close the system, the Poisson equation, which connects the 
field to the charge densities.
The final (1D) mathematical framework is:

where                                  ,

and                 ,                                        .
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Electronic device modeling - I

DRIFT-DIFFUSION
MODEL (DD)

continuity eqs.

Poisson eq.

TRANSPORT EQS.



§ Avalanche generation is not the only GR mechanism occurring in silicon 
devices. In general, we have to account for two different families:

A. Band-to-band generation/recombination
o Auger
o direct tunneling
o …

B. Defect-assisted generation/recombination
o Shockley-Read-Hall (SRH)
o trap-assisted tunneling
o …
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Electronic device modeling - I



§ SRH processes are determined by such a net rate statistics

where τn,p are proper electron/hole lifetimes, i.e. the average time interval 
(~10–7-10–9 s) between two consecutive scattering processes originating 
(or annihilating) e–/h+ pairs.

§ Moreover, band-to-band tunneling is modeled with the usual Kane 
expression (1961)

with A and B (V/cm) material-dependent parameters.
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➤ We need a method to compute the DD model

where φ is the input function, n, p and ℰ are the unknowns of the con-
tinuity equations and where the Poisson equation closes the system.

➤ We have to solve a set of non-linear, secondary-order PDEs, in space
and time, for the whole device!
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Electronic device modeling - II
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Electronic device modeling - II

§ The strategy

• Dynamics (bias ramps, transients, …) is treated as a sequence of small increments between 
stationary states at equilibrium: the quasi-stationary process;

• At each quasi-stationary step the mathematics has to be simplified through proper 
approximations and algorithms:

1. the geometry is discretized (e.g.: Delaunay-Voronoï procedure)

2. DD system is rewritten and adapted to the mesh grid
3. PDEs are linearized and transformed into ODEs (FD schemes)
4. I.C. and B.C. are defined
5. the new DD model is solved via iterative methods (Newton) in all

mesh nodes
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Electronic device modeling - II

1. The geometry is discretized (e.g.: Delaunay-Voronoï procedure)

are conserved
at boxes interfaces

design of nodes

creation of
non-obtuse triangles

creation of boxes
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Electronic device modeling - II

2. Drift-Diffusion system is rewritten and adapted to the mesh grid

scalar/vector operators
and constants are 

transformed:

by averaging the 
in/out quantities at 

each box side, they are 
computed at nodes
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Electronic device modeling - II

3. PDEs are linearized and transformed into ODEs (FD schemes)

with:

and

FD central differences + Scharfetter-Gummel scheme

?
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Electronic device modeling - II

4. I.C. and B.C. are defined

Boundary Conditions:

Neumann homogeneous (insulators, external edges,…)

Neumann non-homogeneous (dielectrics)

Dirichlet non-homogeneous (contacts)

Initial Conditions: starting polarization at contacts
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Electronic device modeling - II

§ TCAD procedure for each node:
a) Choose a maximum number of iterations #max and a tolerance !
b) Impose proper I.C. and B.C.
c) Start from an initial guess "#$ for the electrostatic potential
d) The equilibrium solution "# is obtained by solving only the Poisson equation with 

the I.C. and B.C.

§ If we have to perform a voltage ramp or a transient:
d) each step i of the ramp (with i =1,…,N) is treated as a quasi-stationary state. The 

potential resulting from the Poisson solution at equilibrium "# is used as initial guess 
for solving the DD equations at steps i ≥ 1

§ If the solution is found within the maximum number of iterations #max and 
with an error smaller than the tolerance !, then the system converges and the 
scheme go further, otherwise:
§ The pitch of the steps Δi is decreased
§ The tolerance ! is increased
§ If the alternatives above fails, then the method is aborted
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!"# Poisson equation
@ equilibrium

I.C. B.C.

init. guess!"

tolerance #max iterations

INITIAL SOLUTION QUASI-STATIONARY PROCESS FINAL SOLUTION

yes

convergence
no

!N
nN
pN
ℰN
JN
⋮

mesh, doping

Drift-Diffusion eqs.
@ i ≥ 1

i = 1,…,N–1

i = N

physics (GR, …)

!&'(#

Electronic device modeling - II



Summary

I. Overview of semiconductor devices
• The pn junction
• Low Gain Avalanche Detectors (LGAD)

II. Electronic device modeling
• Analytical description
• Numerical implementation

III. LGAD design using numerical simulations

M. Mandurrino (INFN-To) “From the pn junction to the UFSD design”, Torino – 9.05.19 41



Design and simulation of LGAD

➤ Why LGAD are so innovative?

§ Large signals coupled with low Gain ⟹ high S/N
§ Fast signals ⟹ high time resolution
§ Simple design  ⟹ low production cost
§ Huge ongoing R&D  ⟹ radiation hardness
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Design and simulation of LGAD

➤ How a real LGAD module is made?
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first 4x24 pixel
demonstrator in 2018

CMS ETL

1x3 mm2 pixels

LGAD module



Design and simulation of LGAD

➤ How a real LGAD module is made?
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Three main R&D areas
1. Study of detector static/dynamic characteristics: I(V), G(V), C(V), …
2. Analysis about the internal electric fields: efficiency issues, …
3. Radiation tolerance

p

n

i(π)

p+



Design and simulation of LGAD

1. Study of detector static/dynamic characteristics: I(V), G(V), C(V), …
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gain layer
depletion

bulk (full)
depletion

50 µm LGAD 50 µm LGAD



Design and simulation of LGAD

2. Analysis about the internal electric fields: efficiency issues, …
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Design and simulation of LGAD

2. Analysis about the internal electric fields: efficiency issues, …
§ Two main strategies:

a. layout scaling
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Design and simulation of LGAD

2. Analysis about the internal electric fields: efficiency issues, …
§ Two main strategies:

a. layout scaling
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Design and simulation of LGAD

2. Analysis about the internal electric fields: efficiency issues, …
§ Two main strategies:

b. implement a new readout approach
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Design and simulation of LGAD

3. Radiation tolerance
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empirical acceptor removal/creation law

HL-LHC fluence high removal

low removal



Design and simulation of LGAD

3. Radiation tolerance
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empirical acceptor removal/creation law
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Design and simulation of LGAD

1. Study of detector static/dynamic characteristics: I(V), G(V), C(V), …
+

2. Analysis about the internal electric fields: efficiency issues, …
+

3. Radiation tolerance
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2.

1. + 3.

Da	tagliare:
⎕Single	Pad	1mm	4ring

perW1,	W3,	W8

Wafer # Dopant Gain dose Carbon
1 Boron 0.98
2 Boron 1.00
3 Boron 1.00
4 Boron 1.00 low
5 Boron 1.00 High
6 Boron 1.02 low
7 Boron 1.02 High
8 Boron 1.02
9 Boron 1.02

10 Boron 1.04
11 Gallium 1.00
14 Gallium 1.04
15 Gallium 1.04 low
16 Gallium 1.04 High
18 Gallium 1.08



Design and simulation of LGAD
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Design and simulation of LGAD
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pad bias GRs



Design and simulation of LGAD

1. Study of detector static/dynamic characteristics: I(V), G(V), C(V), …
+

2. Analysis about the internal electric fields: efficiency issues, …
+

3. Radiation tolerance
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2.

1. + 3.

Da	tagliare:
⎕Single	Pad	1mm	4ring

perW1,	W3,	W8

Wafer # Dopant Gain dose Carbon
1 Boron 0.98
2 Boron 1.00
3 Boron 1.00
4 Boron 1.00 low
5 Boron 1.00 High
6 Boron 1.02 low
7 Boron 1.02 High
8 Boron 1.02
9 Boron 1.02

10 Boron 1.04
11 Gallium 1.00
14 Gallium 1.04
15 Gallium 1.04 low
16 Gallium 1.04 High
18 Gallium 1.08



LGAD production: the complete workflow!
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simulation layout & 
design

theory & 
concept test run

simulation lab & rad 
testing

installation

production optimization



Contacts and Info
Marco Mandurrino, Ph.D.

Office: Via P. Giuria 1, 10125 Torino
New building, 4th floor, room D22
(+39-011-670)-7400

E-mail: marco.mandurrino [at] to.infn.it
marco.mandurrino [at] cern.ch

⇒ To download this presentation and for more info about simulation: http://personalpages.to.infn.it/~mandurri/teaching.html
⇒ About the RSD experiment: http://personalpages.to.infn.it/~mandurri/rsdproject.html
⇒ Master Thesis Proposal: http://personalpages.to.infn.it/~mandurri/teaching/Proposta_di_Tesi_LM_RSD.pdf
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